

CO₂ Capture and Storage

AEP's New Generation Perspective

Michael Dancison

Director – New Generation Development American Electric Power

AEP Company Overview

5.1 million customers in 11 states Industry-leading size and scale of assets:

<u>Asset</u>	<u>Size</u>	<u>Rank</u>
Domestic Generation	~38,300 MW	# 2
Transmission	~39,000 miles	# 1
Distribution	~208,000 miles	# 1

Inductry

AEP's Long-Term GHG Reduction Portfolio

Renewables (Biomass Co-firing, Wind)

Supply and Demand Side Efficiency

Off-System Reductions and Market Credits (forestry, methane, etc.) Commercial Solutions of New Generation and Carbon Capture & Storage Technology

AEP is investing in a portfolio of GHG reduction alternatives

AEP Leadership in Technology: IGCC/USC and Future Gen

NEW ADVANCED GENERATION

•IGCC---AEP was the first to announce plans to build two 600+ MW IGCC commercial scale facilities in the US in Ohio and West Virginia by the middle of next decade

•USC--AEP will be the first to employ the new generation ultra-supercritical (steam temperatures greater than 1100°F) coal plants in the U.S.—in Arkansas

•FUTUREGEN - First Near Zero Emissions Hydrogen/ Electric (coal-fueled IGCC with CCS)-DOE along with AEP and Alliance members

Note: C/H is the mass ratio of carbon to hydrogen

Carbon Intensity for Different Systems

CO₂ Reduction Necessary to Achieve NGCC Emission Levels

Note: H.R. = Heat Rate (efficiency). Values represent typical heat rates, used here for illustrative purposes only.

Post-Combustion Capture

- AEP is committed to bring carbon capture and storage technologies from the research and pilot stages into large scale commercial application
 - Post-Combustion Capture Existing Units
 - Conventional or Advanced Amines, Chilled Ammonia
 - Key Points
 - Amine technologies commercially available in other industrial applications
 - Relatively low CO₂ concentration in flue gas Difficult to capture
 - High parasitic demand reduced unit output
 - Conventional Amine ~25-30%, Chilled Ammonia target ~10-15%
 - Amines require clean flue gas

AEP Alstom's Chilled Ammonia Process

Post-Combustion Capture

AEP Chilled Ammonia Technology Program

2009 Commercial Operation Phase 1

Project Validation

- 20 ${\rm MW}_{\rm e}$ (megawatts electric) scale (a scale up of Alstom/EPRI 5 ${\rm MW}_{\rm t}$ (megawatts thermal) field pilot, under construction at WE Energies)
- ~100,000 tonnes CO₂ per year
- In operation 2Q 2009
- Approximate total cost \$80 \$100M
- Using Alstom "Chilled Ammonia" Technology
- Located at the AEP Mountaineer Plant in WV
- CO₂ for geologic storage

Phase 1 will capture and sequester 100,000 metric tons of CO₂/year

- Retrofit NOx Controls and FGD Required: \sim \$225 \$300M (required for CO₂ capture equipment)
- Located at AEP's Northeastern Plant Unit 3 or 4 in Oklahoma
- CO₂ for Enhanced Oil Recovery (EOR) or geologic storage

Phase 2 will capture and sequester 1.5 Million metric tons CO₂/year

AEP CO₂ Injectivity in the Mountaineer Area

CO₂ injection should also be possible in shallower sandstone and carbonate layers in the region

Rose Run Sandstone (~7800 feet) is a regional candidate zone in Appalachian Basin

A high permeability zone called the "B zone" within Copper Ridge Dolomite has been identified as a new injection zone in the region

Mount Simon Sandstone/Basal Sand the most prominent reservoir in most of the Midwest but not desirable beneath Mountaineer site

Sedimentary Rocks A Microscopic View

Permeability much less than 0.01 mD

Shale with Extremely Low Permeability Forms Good Caprock

Pore

Permeability 10 – 100 mD

Sandstone with High Permeability Forms Excellent Host Reservoir at Low Cost Sandstone with Medium Permeability Forms Good Host Reservoir Medium Cost

Pore

Permeability 100 – 1,000 mD

Enhanced Oil Recover (EOR)

Graphic courtesy of USDOE National Energy Technology Laboratory

Oxy Coal Firing

- Modified-Combustion Capture Oxy Coal Firing
 - Key Points
 - Technology not yet proven at commercial scale
 - Creates stream of high CO₂ concentration
 - High parasitic demand, >25%
 - Demonstration Scale
 - 10 MWe scale
 - Teamed with B&W at its Alliance Research Center and several other utilities
 - Demo completion 4Q 2007
 - Commercial Scale
 - Retrofit on existing AEP sub-critical unit (several available)
 - 150 230 MWe scale retrofit
 - 4,000 5,000 tons CO₂ per day
 - Feasibility study in progress

Pre-Combustion Capture

- Pre-Combustion Capture
 - IGCC with Water-Gas Shift FutureGen Design
 - Key Points
 - Most of the processes commercially available in other industrial applications
 - Have never been integrated
 - Turbine modified for H₂-based fuel, which has not yet been proven at commercial scale
 - Creates stream of very high CO₂ concentration
 - Parasitic demand (~20%) for CO_2 capture lower than amine or oxy-coal options

FutureGen's Water-Gas Shift Process *Pre-Combustion Capture*

Examples of Relative GHG Mitigation Costs for Power Sector

\$/ton CO₂e

\$40+

- Carbon Capture w/ Geologic Sequestration
- Other renewable, advanced geothermal and/or solar
- Carbon Capture for Enhanced Oil Recovery
- New Biomass Generation
- Dispatch of additional gas vs. inefficient coal
- Biomass Co-firing
- Biological Sequestration (e.g. Forestry)
- New Wind
- Energy Efficiency
- Methane Offsets

\$0

Nuclear?

Questions ?

Thank you for listening